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Abstract

In different formulations, analytical solutions are obtained of the problem of the axisymmetrical loss of stability of a circular
plate of shape memory alloy undergoing a direct martensite transformation under a compression load. It is established that the
solution based on the “fixed phase composition” concept gives an upper estimate of the critical load, while the solution based on
the “continuing loading” concept gives a lower estimate. For a clamped plate, an intermediate solution is found using the “elastic
unloading” concept that satisfies all the equations of the problem with zero variations in external loads and corresponds to a thickness
of the additional phase transformation layer that is independent of the radial coordinate.
© 2006 Elsevier Ltd. All rights reserved.

It has been found experimentally1 that thermoelastic martensite transformations, occurring under compression
stresses, may cause loss of stability of thin-walled elements of shape memory alloys (SMAs). Various concepts upon
which a description of this effect may be based have been analysed:2–5 the hypothesis of a “fixed phase composition”,
according to which, on transition to the neighbouring equilibrium state, the phase composition parameter does not
change, and the concept of a “continuing phase transition”, according to which the transition to the neighbouring
equilibrium state is accompanied by an additional phase transformation. This last assumption is possible in two
versions: the hypothesis of “continuing loading”, according to which the active loads in the process of loss of stability
can experience small perturbations, as a result of which all points of the cross-section undergo an additional phase
transition, and the concept of “elastic unloading”, in which a zone is formed on the convex surface of the plate during
buckling that is free of an additional phase transition.

Within the framework of these concepts, solutions have been obtained of problems of the stability of a “Shanley
column” on support rods of SMAs,2,3 the stability of a rod4 and the stability of a rectangular plate and strip plate of
the same material.5 It must be pointed out that the concepts of “elastic unloading” and “continuing loading” are not
entirely alternative. Thus, for the case of a plate, a solution has been constructed5 using the “elastic unloading” concept
with a constant thickness of the additional phase transition layer. However, to justify this solution, the external loads
acting on the plate must experience small perturbations, for which explicit expressions have been obained.

In the present paper, within the framework of different hypotheses, analytical solutions are obtained of the problem
of the loss of stability of a continuous, circular, clamped SMA plate (without constraints on the radial displacement of
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the edges) or an SMA plate simply supported along its contour, caused by a direct martensite transformation occurring
under a constant radial compression load, uniformly distributed over the plate contour.

1. Formulation of the problem

A continuous circular plate of constant thickness h and radius R, made of shape memory alloy (SMA) is considered.
A polar coordinate system r, � is introduced, the axes of which are positioned in the middle plane, while the origin
is located at the centre of the plate. The plate is evenly loaded along its end edge with a constant, external, surface,
compressive force p acting in the radial direction. The compression load is considered to be positive.

The surface force p is applied to the plate at such a high temperature that the stress state created does not cause a
direct martensite transformation under isothermal conditions. The plate is then slowly cooled from the direct martensite
transformation start temperature to the martensite transformation finish temperature. The temperature of all points of
the plate at each instant of time is considered to be identical.

What we require is the minimum load for which, during a direct transformation, along with the trivial plane shape
of the plate, distorted equilibrium shapes are also possible. The stability problem is solved in a linearized formulation
within the framework of the theory of small strains and the kinematic Kirchhoff–Love hypotheses (with respect to total
strains).

To solve the stability problem, we will use a simplified version of a previously proposed6–8 system of constitutive
relations for SMAs, which for a plane stress state (the axisymmetric problem) has the form

(1.1)

(1.2)

E(q) = q

E1
+ 1 − q

E2
,

1

G(q)
= q

G1
+ 1 − q

G2
, �(q) = E(q)

2G(q)
− 1

(1.3)

(1.4)

(1.5)

where �, �(1) and �(2) are the total, elastic and phase strains, �r, �� and �i are the stress components and stress intensity,
q is the volume fraction of the martensite phase, E(q), E1 and E2 are the Young’s modulus of the two-phase medium
and its values in the martensite (subscript 1) and austenite (subscript 2) states, G(q), G1 and G2 are the analogous
values for the shear modulus, �(q) is Poisson’s ratio of the two-phase medium, T is the actual temperature, M1 and M2
are the martensite transformation start (subscript 1) and finish (subscript 2) temperatures in the stress-free material,
and k, �(1) and a0 are constants of the material.

In accordance with Eqs. (1.1) and (1.3), when solving the problem, the volume effect of the reaction of the martensite
transformation and the purely temperature strains are neglected, and from inequalities (1.4) and the final expression of
system (1.5) it is clear that, in determining the conditions for the occurrence of direct transition (1.4), the influence of
shear stresses is neglected.

2. Analysis of the subcritical state

It has been established9 that, if the stress values obtained when solving a certain elastic problem are independent
of the elasticity constants and coordinates of points of the body, then precisely the same stresses should be obtained
when solving the problem of a direct martensite transformation of a body of SMA of the same shape and identical
loading, provided that the temperature is independent of the coordinates of points of the body. Hence it follows that
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the subcritical stresses in the plate considered and the stress intensity �i during direct transformation will be given by
the formulae

(2.1)

The phase strains are found by integrating relations (1.3) taking into account equalities (2.1) and the zero initial
conditions. We have

(2.2)

According to equalities (2.1), up to the instant when loss of stability occurs, there is uniform compression of the
plate. The subcritical values of the deflection, angle of rotation and curvature are zero.

3. The system of equations for the perturbed state

It has been shown4,5 that allowance for small temperature perturbations when analysing the stability of rods and
plates of SMAs does not lead to any change in the values of the critical forces. Therefore, the temperature variation
will be assumed to be zero in what follows. The straight normal hypothesis for the total strain is written for a plate,
taking into account relations (1.1) and (1.2), in the form

(3.1)

where x3 is the coordinate orthogonal to the plate, �0
r and �0

� are the strains of the middle plane of the plate, and �r and
�� are the curvatures.

Taking variations of both sides of equalities (3.1) and using relations (1.3) and (2.2), we obtain

(3.2)

(3.3)

where H is the Heaviside function, and �1 and �2 are Poisson’s ratios for the martensite and austenite states. Here and
below, all quantities without a variation sign relate to the subcritical state, and the argument q on the quantities E, G
and � without subscripts is omitted.

Solving Eqs. (3.2) and (3.3) for the stress variation, we obtain

(3.4)

For ���, a formula similar to (3.4) holds, in which the subscripts r and � must change places.
To fix our ideas, suppose the lower part of the plate cross-section −h/2 ≤ x3 ≤ x0

3 on transition to the neighbouring
equilibrium state experiences an additional phase transition (APT), and the upper part x0

3 ≤ x3 ≤ h/2 is deformed
elastically. In the elastic part the differential condition for the occurrence of direct transformation (1.4) should be
violated: ��i ≤ 0 (here, we have taken into account that �T = 0); in the APT zone, the opposite inequality should hold.
Then, assuming a continuous variation of the stresses on passing through the boundary of the APT zone, it follows that,
on this boundary itself, the relation ��i = 0 should hold. Substituting here the expression for the variation of the stress
intensity (3.3), and using in the relation obtained the expression for the variations of the stress tensor components (3.4),
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written for the case U+ = 0, we obtain an equation for determining the coordinate of the boundary of the APT zone:

(3.5)

Substitution of expression (3.4), taking Eq. (3.5) into account, into the expressions for the variations of the forces
and moments per unit length

where the subscript m takes the values of r, �, yields

(3.6)

(the two unwritten relations are obtained by interchanging the subscripts r and �). Here

(3.7)

According to relations (3.6), the expressions for the variations of the forces and moments per unit length consist
of an elastic part (the first terms in the round brackets) and an inelastic part (the second terms in the round brackets).
The inelastic terms of the force and moment tensors are spherical tensors. Therefore, the differences �Mr − �M� and
�Nr − �N� are calculated using the usual elastic relations with variable moduli depending on the parameter q. At the
same time, the sums of the variations of the moments or forces are proportional respectively to the sums of the variations
of the curvatures or strains of the middle surface [to make sure of this for the case of forces, it is necessary to use
relation (3.5)]. These considerations facilitate the derivation of the resolving equation of the problem.

To relations (3.6) it is necessary to add the equilibrium equations

(3.8)

where �Qr is the variation of the external surface load, and the equation of compatibility

where the prime denotes a derivative with respect to the coordinate r. The latter equation, taking into account the
left-hand sides of representations (3.1), and also linear expressions linking the curvatures and the angle of rotation

(3.9)

is equivalent to a like equation but written only for variations of the strains in the middle plane:

(3.10)

Instead of the condition of compatibility (3.10), it is possible to use expressions for the variations in the corresponding
strains in terms of the variation of the radial displacement

(3.11)

As a result, all the unknown functions of the problem can be expressed in terms of the two quantities, du and dϕ,
for which two differential equations must be satisfied (each of the second order), obtained by substituting expressions
(3.5), (3.6), (3.9) and (3.11) into Eq. (3.8).
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The boundary conditions at the centre of the plate (at r = 0) are the conditions of zero variation of the angle of
rotation and zero variation of the radial displacement

(3.12)

The boundary conditions on the outer contour of the plate for the angle of rotation depend on the type of fastening the
plate. For the clamping condition of zero variation of the angle of rotation

(3.13)

For simple support there is the condition of zero variation of the radial bending moment (3.6)

(3.14)

The boundary condition on the outer contour for the variation of the radial displacement reduces, generally speaking,
to specifying the variation of the external load on this contour: �Nr = −h�p, or

(3.15)

Suppose the problem is solved when there are no variations of the external loads (i.e. using the “elastic unloading”
concept). In this case, in the second equation of system (3.8) and in Eq. (3.15), it is necessary to assume that �Qr = 0
and �p = 0. The system of equations obtained with the corresponding boundary conditions is sufficient to solve the
stability problem.

With the “continuing loading” concept, the stability problem for SMAs, generally speaking, becomes indeterminate,
since the perturbations of the external loads are unknown. However, it is possible to use a formulation of the problem
in which, in a certain class of solutions, that solution is sought for which the critical values of the external loads are a
minimum, provided that the perturbations of the external loads are small.

4. Solutions for the case of a constant thickness of the zone of additional phase transition

In the present paper, as the class of solutions mentioned above, we will consider those solutions for which the
quantity x0

3 (or z) is independent of the radial coordinate r (i.e. the thickness of the APT zone is identical at all points
of the plate). Combining the expressions for �Nr and �N� (3.6), taking Eq. (3.5) into account, we obtain

(4.1)

The quantity q is assumed to be independent of the coordinate r, and therefore the q-dependent functions E(q)�(q)
and �(p, q) in expression (4.1) for 	 are independent of r. Thus, according to equality (4.1), the quantity z is independent
of r in the case when the sum of the variations of the membrane forces is proportional to the sum of variations of the
strains of the middle surface, with a proportionality factor that does not depend on r.

Substituting into relation (3.5) the expressions for the variations of the curvatures (3.9) and strains (3.11) in terms
of the variations of the angle of rotation and radial displacement, we obtain (r�u)′ = x0

3(r�
)′. Integration with respect
to r under conditions where x0

3 is independent of the radius, yields (r�u) = x0
3r�
 + C. From this equality and the

condition that �u and �
 are bounded as r → 0, it is possible to obtain C = 0, from which it follows that

(4.2)

Thus, for the class of solutions considered, the variations �
 and �u are proportional, with a factor that is independent
of the coordinate r. Consequently, any homogeneous linear equation or boundary condition that is satisfied for one of
these variations must also be satisfied for the other. Therefore, on the basis of the “elastic unloading” concept with
zero variations of the external forces, each of the functions �
 and �u should satisfy two differential equations and
two sets of boundary conditions. It is clear that such a situation can only occur when a special selection is made of the
functions in the system of equations.

When the parameter z is independent of r, substitution of the expressions for the variations of the moments (3.6)
into the first equilibrium Eq. (3.8), taking into account expressions (3.9) for the variations of the curvatures, leads to
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the equation

(4.3)

which differs solely in the value of the coefficient of �
 from the equation of stability for an elastic circular plate,10,11

[the latter is obtained from Eq. (4.3) if it is assumed that �1 = 0 and the cylindrical stiffness D(q) is considered to
be constant]. Therefore, the procedure for solving Eq. (4.3) does not differ from the procedure for investigating the
corresponding equation for elastic plates.10,11. The difference is that, for a plate of SMA, unlike for an elastic plate,
the required eigenvalue depends both on q and on z, and here, besides Eq. (4.3), it is necessary for the second equation
of system (3.8), with the corresponding boundary condition (3.15), to be satisfied, and also relation (3.5). When z is
independent of r, this system can be solved successively. Initially, from Eq. (4.3), the eigenvalue and the eigenfunction
�
, which depend on the quantities z and q, are determined. Then, changing, by means of relation (4.2), to the variation
�u, and substituting the solution obtained into the second equation of system (3.8), it is possible to find the value of
z. A version is possible with a specification from some considerations of the quantity z and subsequent determination
of the corresponding values of the load variations on the basis of the second equation of (3.8) and condition (3.15).
As such considerations it is possible, in particular, to use the requirements that the critical loads should be a minimum
or a maximum with respect to z. In the elastic case, the system of two equations of stability splits, and for the second
equation of (3.8) a trivial solution is possible.

The replacement of the independent variable r by υ = r� enables us to reduce Eq. (4.3) to a Bessel equation, the
solution of which is written in terms of Bessel functions of the first and second kind with an index of unity in the
form 
(v) = C1J1(v) + C2Y1(v) For a continuous circular plate, from the second boundary condition of system (3.12) it
follows that C2 = 0, i.e.

(4.4)

The second formula of system (4.4) was obtained from the first by means of relation (4.2).
For a plate simply supported along its contour, from the boundary condition (3.14) we obtain the equation

(4.5)

where J0 is a Bessel function of the first kind with zero index. The smallest root of this equation U1 depends, generally
speaking, on p, z and q. For a plate clamped along its contour, boundary condition (3.13) yields J1(U) = 0. Its smallest
root U2 is roughly 3.8317.

Taking into account the equality �R = Ui, from the second formula of system (4.3) we obtain the required equations
for the critical load

(4.6)

Here and below, i = 1 corresponds to simple support, and i = 2 corresponds to clamping. For the case of simple support
it is more convenient in general to solve not system (4.5), (4.6) but the equation obtained directly by substituting the
expression U = �R into the first formula of (4.5). As a result, taking into account the dependence of � on p, z and q
(4.3), Eq. (4.5) enables us to determine the critical load p as a function of z and q.

Minimization of the functions p = p(z, q) obtained for the cases of clamping and simple support with respect to q,
and, possibly, depending on the statement of the problem, with respect to z, enables us to find the critical value of the
load p*.

According to formula (4.6), taking into account relations (3.7), it can be shown that the critical load p as a function
of z in the segment [−1, 1] for fixed q has its greatest and least values at the points z = −1 and z = 1 respectively.

An important feature of the solution of the problem of the stability of a plate of SMA clamped along its contour
must be pointed out. The fact is that, in accordance with solution (4.4), the variation of the doubled mean curvature
��r + ��� vanishes at a certain value of r = r0 < R, and, on passing through this point, it changes sign. When r passes
through the value r0, that surface of the plate to which the region of elastic unloading with ��i < 0 is adjacent will now
border the region of additional loading with ��i > 0. As a result, according to Eq. (3.5), the sign of x0

3 and z should
change. Consequently, in this case it is a matter not of a constant value of z (independent of r) but of a coordinate that,
without changing in absolute magnitude, can change sign (i.e. is a discontinuous function). Nonetheless, it is possible
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to show that the solution obtained satisfies all the equations of the problem both to the left and to the right of the point
of discontinuity (the final system will differ slightly from that given above since it is formulated for conditions where
the region −h ≤ x3 ≤ x0

3 is the zone of unloading while the region x0
3 ≤ x3 ≤ h is the APT zone).

In the case where the function z = z(p, q) or 	 = 	(p, q) is assigned, the magnitude of the variation of the external
load necessary for all the equations of the stability problem to be satisfied can be found by substituting the expressions

obtained from the second equation of (3.6), taking into account relations (3.5) and (3.10), into the second equation of
system (3.8). We obtain

(4.7)

The substitution into this equation of expressions (3.9), in which the function 
 is represented in the form (4.4), and
also the use of the expression for 	 (4.1), enables us finally to obtain

(4.8)

The magnitude of �p can be found from condition (3.15) using the second formula of system (4.4).
If the concept of “fixed phase composition” (CFPC)3,4 is adopted, then, on transition to the neighbouring equilibrium

state, APT does not occur. The values of the variations of the forces and moments, and also the magnitude of the critical
force, corresponding to the solution of the problem in such a formulation, can be obtained formally by assuming in the
formulae obtained above that z = −1. As a result, according to relations (3.7), �1 = 0 and �2 = 0 will be obtained, in the
formula for the variations of the forces and moments (3.6) only “elastic” terms will remain, and formula (4.6) for the
critical force will be transformed into a dependence characteristic of an elastic circular plate,10,11 in which account is
taken of the variability of the cylindrical stiffness D(q) on phase transition:

(4.9)

According to relations (4.1), in this solution 	 = Eh/(1 − �), and from equality (4.8) the following equation is obtained

(4.10)

Therefore, transition to the neighbouring equilibrium state without APT can occur within the framework of system
of constitutive relations (1.1)–(1.5) only when there are perturbations of the external load. It can be shown that, owing
to variations of the external surface forces (4.10) and the end load �p, an additional stress state occurs in the plate, the
variation of the intensity of which is negative at each point of the cross-section and zero on its lower boundary.

It should be noted that the same expression for the critical force (4.9) can be arrived at by solving the stability
problem within the framework of system (1.1)–(1.5), provided that the material parameter k is zero, i.e. according to
the terminology adopted earlier12 when solving the problem in an uncoupled statement. In this last case, on transition
to the neighbouring equilibrium state, APT cannot in principle occur, and relation (3.5) loses its meaning and does not
occur in the system of equations of the problem. The existence of such a solution does not require variations of the
external load of type (4.7), (4.8) since the equations for the strain of the middle plane and the corresponding forces have
a zero solution admissible if relation (3.5) does not occur in the system of equations. Thus, solutions of the stability
problem using the CFPC and in an uncoupled statement, although essentially different, lead to the same value of the
critical force (4.9), which is the maximum of all possible values obtained when solving the problem, provided the
quantity z is independent of r.
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Fig. 1.

Below, we will consider the alternative case of the lowest possible critical load, obtained when z = 1. This corresponds
to the concept of “continuing loading” (CCL),3,4 according to which on transition to the neighbouring equilibrium
state all the points of the cross-section experience APT. In this case, according to relations (3.7), �1(p, z, q) = �(p, q)
and the critical load depends only on the phase composition parameter:

This solution is consistent with the equilibrium equation for membrane forces (3.8) only when there is a perturbation
of the surface load �Qr, determined using relation (4.7) with z = 1, �2(q, z) = h�(q)/2. It can be shown that, for the
case of simple support, within the framework of the given solution the boundary condition (3.15) is satisfied with
zero variations of the end load: �p = 0. In fact, from relations (3.7) it is easy to establish that, with z = 1, the equality
�1 = 2�2/(hz) is satisfied. Then, taking relation (4.2) into account, from condition (3.14) it follows that the left-hand
side of relation (3.15) is zero, from which the assertion is obtained.

The values of the critical forces obtained for intermediate values of z ∈ (−1, 1) lie between solutions based on the
CCL and the CFPC. This fact is illustrated in Fig. 1 for the case of the clamped plate with a relative value of its radius
R/h = 20; the dependence on q of the dimensionless critical forces S, related to critical load p = U2

1D(0)/(hr2), with
isothermal loss of stability of an elastic plate with austenite values of the moduli is given for the CCL (the lower dashed
curve), for different values of z and for the CFPC (the upper dashed curve). This and all subsequent calculations were
carried out for the following values of parameters of the material, characteristic of titanium nickelide

The critical load corresponding to loss of stability p* for each value of z can be determined from these curves as
the ordinate of the minimum point. It is interesting to note that only for the upper curve obtained with the CFPC does
the lowest value of critical load correspond to q = 1, i.e. loss of stability occurs in the entirely martensite phase state,
corresponding to the minimum values of the moduli of elasticity. For −1 < z ≤ 1, the minimum on the curves p = p(q)
is reached for values 0.5 < q* < 1. The position of the minimum is defined on the one hand by the point q = 0.5, where
the rate of change in the phase composition parameter is maximum, and on the other hand by the point q = 1, where
the moduli of elasticity are a minimum. Therefore, in the case of failure to account for APT, the minimum value of the
critical load corresponds to the point q = 1 (the upper curve). If, however, in the formulae obtained above it is assumed
that E1 = E2 and �1 = �2, i.e. the variability of the moduli of elasticity is ignored, then all the curves for −1 < z ≤ 1 will
have a minimum at q = 0.5. It should be noted that, according to experimental data,1 loss of stability during a direct
transformation never occurs when q = 1 but is always observed at some intermediate point of the phase transition.

5. The exact solution of the stability problem when there are no perturbations of the external load

In accordance with relation (4.7) or (4.8) a solution of the stability problem exists in which the coordinate of the
boundary of the APT zone is independent of r, and in this case the equilibrium equation for membrane forces is satisfied
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with zero right-hand sides, i.e. for zero variations of the external loads. For this solution, the following relations must
be satisfied

(5.1)

which ensure that the quantity �Qr is zero. It can be shown that, for a clamped plate, when relations (5.1) are satisfied,
the variation of the end compression force �p will also be zero. In fact, for �p = −�Nr(R)/h, on the basis of the second
relation of system (3.6), taking into account equalities (3.5), (5.1) and (4.2), it is possible to obtain

From this it follows that, for a clampled plate, by virtue of the boundary condition (3.13), �p = 0. It should be noted
that, for a simply supported plate, when condition (5.1) is satisfied, the values of �Qr will be zero but the values of

will be non-zero.
From relations (5.1), taking the expression for �2 (3.7) into account, it is possible to obtain the equation

(5.2)

It can be shown that, for values of the constants of elasticity that are characteristic of SMAs of the titanium nickelide
type (E2 ≥ E1, �2 ≤ �1), the condition 0 < � ≤ 1 is satisfied, and Eq. (5.2) has two real roots, one of which exceeds
unity, while the other

(5.3)

for all values of q ∈ [0,1]. Expression (5.3) serves as the required unique solution of the problem in question for z. It
must be noted that, unlike the solutions obtained in the previous section, in this case the parameter z is not constant but
necessarily depends on q. From the non-negativity of z [Eq. (5.3)] it follows that, within the framework of the solution
obtained, the APT zone [−1, z] should occupy a large part of the plate cross-section.

Substitution of expression (5.3) into the expression for �1 (3.7) and the result of this substitution into expressions
(4.6) for the critical force yields

(5.4)

The solution of system of Eqs. (5.3), (5.4) yields the function z = z(q), the graphs of which for the case of clamping
are presented in Fig. 2 for different values of R/h. It can be seen that for fairly thick plates these graphs comprise, in
any case, curves that are extremely flat in their central section, reaching maximum values of z1 at certain mid-points
q = q1 of the interval (0, 1).

The graph of the dimensionless critical force S against q, obtained by solving the same system for R/h = 20, is given
in Fig. 3 (the solid curve); the dashed curve represents the dependence of S on q, found by solving problem (4.6) for
z = z1 = const. According to the data in Fig. 3, the abscissa of the minimum point of the limit load with respect to q does

Fig. 2.
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Fig. 3.

Fig. 4.

not coincide with the abscissa of the maximum point of z with respect to q. The limit loads p* themselves, determined
from the solution for variable z and obtained for a constant maximum value z = z1, hardly differ.

Figure 4 shows graphs of the dependences of the dimensionless critical load S1 = p∗h3/(D(1))U2
2 ), related to the

critical load of isothermal loss of stability in the martensite state, against the relative thickness of the plate y = h/R for
the case of clamping. Curve 1 was obtained using the concept of “continuing loading”, curve 2 was obtained using the
concept of “elastic unloading” with zero variations in the external forces, and curve 3 was obtained using the concept
of “fixed phase composition”. As can be seen, the difference between these solutions is small for comparatively thin
plates and increases sharply as their thickness increases. The critical load for fairly thick plates may be many times less
than the critical force corresponding to isothermal loss of stability in the martensite phase state, which is consistent
with experimental data.1

In Fig. 5, the dependences of the relative values of the limit loads S on q for the cases of clamping (the solid
curves) and simple support (the dashed lines) are compared. All loads are related to the critical force corresponding to

Fig. 5.
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isothermal loss of stability of a clamped plate in the austenite phase state. Curves 1 were obtained using the “continuing
loading” concept, and curves 2 were obtained using the “elastic unloading” concept. According to Fig. 5, the difference
between the minimum critical values of the loads with respect to q, determined within the framework of these concepts,
is considerably higher for the case of clamping than for simple support.
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